Wrapper around Ali Tongyi large language models that use the Chat endpoint.

To use you should have the ALIBABA_API_KEY environment variable set.

Example

const qwen = new ChatAlibabaTongyi({
alibabaApiKey: "YOUR-API-KEY",
});

const qwen = new ChatAlibabaTongyi({
modelName: "qwen-turbo",
temperature: 1,
alibabaApiKey: "YOUR-API-KEY",
});

const messages = [new HumanMessage("Hello")];

await qwen.call(messages);

Hierarchy

Implements

  • AlibabaTongyiChatInput

Constructors

Properties

ParsedCallOptions: Omit<BaseLanguageModelCallOptions, never>
apiUrl: string
caller: AsyncCaller

The async caller should be used by subclasses to make any async calls, which will thus benefit from the concurrency and retry logic.

modelName: string & {} | "qwen-turbo" | "qwen-plus" | "qwen-max" | "qwen-max-1201" | "qwen-max-longcontext" | "qwen-7b-chat" | "qwen-14b-chat" | "qwen-72b-chat" | "llama2-7b-chat-v2" | "llama2-13b-chat-v2" | "baichuan-7b-v1" | "baichuan2-13b-chat-v1" | "baichuan2-7b-chat-v1" | "chatglm3-6b" | "chatglm-6b-v2"
streaming: boolean
verbose: boolean

Whether to print out response text.

alibabaApiKey?: string
callbacks?: Callbacks
enableSearch?: boolean
maxTokens?: number
metadata?: Record<string, unknown>
name?: string
prefixMessages?: TongyiMessage[]
repetitionPenalty?: number
seed?: number
tags?: string[]
temperature?: number
topK?: number
topP?: number

Accessors

Methods

  • Assigns new fields to the dict output of this runnable. Returns a new runnable.

    Parameters

    • mapping: RunnableMapLike<Record<string, unknown>, Record<string, unknown>>

    Returns Runnable<any, any, RunnableConfig>

  • Parameters

    • messages: BaseMessageLike[]

      An array of BaseMessage instances.

    • Optional options: BaseLanguageModelCallOptions | string[]

      The call options or an array of stop sequences.

    • Optional callbacks: Callbacks

      The callbacks for the language model.

    Returns Promise<BaseMessage>

    A Promise that resolves to a BaseMessage.

    ⚠️ Deprecated ⚠️

    Use .invoke() instead. Will be removed in 0.2.0.

    This feature is deprecated and will be removed in the future.

    It is not recommended for use.

    Makes a single call to the chat model.

  • Parameters

    • promptValue: BasePromptValueInterface

      The value of the prompt.

    • Optional options: BaseLanguageModelCallOptions | string[]

      The call options or an array of stop sequences.

    • Optional callbacks: Callbacks

      The callbacks for the language model.

    Returns Promise<BaseMessage>

    A Promise that resolves to a BaseMessage.

    Deprecated

    Use .invoke() instead. Will be removed in 0.2.0.

    Makes a single call to the chat model with a prompt value.

  • Generates chat based on the input messages.

    Parameters

    • messages: BaseMessageLike[][]

      An array of arrays of BaseMessage instances.

    • Optional options: BaseLanguageModelCallOptions | string[]

      The call options or an array of stop sequences.

    • Optional callbacks: Callbacks

      The callbacks for the language model.

    Returns Promise<LLMResult>

    A Promise that resolves to an LLMResult.

  • Generates a prompt based on the input prompt values.

    Parameters

    • promptValues: BasePromptValueInterface[]

      An array of BasePromptValue instances.

    • Optional options: BaseLanguageModelCallOptions | string[]

      The call options or an array of stop sequences.

    • Optional callbacks: Callbacks

      The callbacks for the language model.

    Returns Promise<LLMResult>

    A Promise that resolves to an LLMResult.

  • Parameters

    • Optional suffix: string

    Returns string

  • Parameters

    Returns Promise<number>

  • Get the identifying parameters for the model

    Returns {
        enable_search?: null | boolean;
        incremental_output?: null | boolean;
        max_tokens?: null | number;
        repetition_penalty?: null | number;
        result_format?: "text" | "message";
        seed?: null | number;
        stream?: boolean;
        temperature?: null | number;
        top_k?: null | number;
        top_p?: null | number;
    } & Pick<ChatCompletionRequest, "model">

  • Get the parameters used to invoke the model

    Returns {
        enable_search?: null | boolean;
        incremental_output?: null | boolean;
        max_tokens?: null | number;
        repetition_penalty?: null | number;
        result_format?: "text" | "message";
        seed?: null | number;
        stream?: boolean;
        temperature?: null | number;
        top_k?: null | number;
        top_p?: null | number;
    }

    • Optional enable_search?: null | boolean
    • Optional incremental_output?: null | boolean
    • Optional max_tokens?: null | number
    • Optional repetition_penalty?: null | number
    • Optional result_format?: "text" | "message"
    • Optional seed?: null | number
    • Optional stream?: boolean
    • Optional temperature?: null | number
    • Optional top_k?: null | number
    • Optional top_p?: null | number
  • Parameters

    • text: string

      The text input.

    • Optional options: BaseLanguageModelCallOptions | string[]

      The call options or an array of stop sequences.

    • Optional callbacks: Callbacks

      The callbacks for the language model.

    Returns Promise<string>

    A Promise that resolves to a string.

    Deprecated

    Use .invoke() instead. Will be removed in 0.2.0.

    Predicts the next message based on a text input.

  • Parameters

    • messages: BaseMessage[]

      An array of BaseMessage instances.

    • Optional options: BaseLanguageModelCallOptions | string[]

      The call options or an array of stop sequences.

    • Optional callbacks: Callbacks

      The callbacks for the language model.

    Returns Promise<BaseMessage>

    A Promise that resolves to a BaseMessage.

    Deprecated

    Use .invoke() instead. Will be removed in 0.2.0.

    Predicts the next message based on the input messages.

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch, any, unknown>

  • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

    Parameters

    Returns AsyncGenerator<BaseMessageChunk, any, unknown>

  • Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

    Parameters

    • params: {
          onEnd?: ((run, config?) => void | Promise<void>);
          onError?: ((run, config?) => void | Promise<void>);
          onStart?: ((run, config?) => void | Promise<void>);
      }

      The object containing the callback functions.

      • Optional onEnd?: ((run, config?) => void | Promise<void>)
          • (run, config?): void | Promise<void>
          • Called after the runnable finishes running, with the Run object.

            Parameters

            Returns void | Promise<void>

      • Optional onError?: ((run, config?) => void | Promise<void>)
          • (run, config?): void | Promise<void>
          • Called if the runnable throws an error, with the Run object.

            Parameters

            Returns void | Promise<void>

      • Optional onStart?: ((run, config?) => void | Promise<void>)
          • (run, config?): void | Promise<void>
          • Called before the runnable starts running, with the Run object.

            Parameters

            Returns void | Promise<void>

    Returns Runnable<BaseLanguageModelInput, BaseMessageChunk, BaseLanguageModelCallOptions>

Generated using TypeDoc